
國 立 清 華 大 學

資訊工程學系

碩士論文

kpgpool: An In-Kernel eBPF Based PostgreSQL
Connection Pool

kpgpool：基於 eBPF實作的 Linux內核
PostgreSQL連線池

研究生： 陳劭愷 (Shao Kai Chen)

學號： 111062605

指導教授： 周志遠 教授 (Prof. Jerry Chou)

中華民國一一三年六月

kpgpool: An In-Kernel eBPF

Based PostgreSQL Connection

Pool

Student: Shao Kai Chen

Advisor: Prof. Jerry Chou

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan, 30013, R.O.C.

June 2024

Abstract

Connection pooling is a common technique that allows multiple clients to share and

reuse connections. Database connection pooling can reduce the cost of opening

and closing connections, especially for traditional database systems, such as Post-

greSQL. Traditional connection pools are implemented as user-space applications,

which take advantage of high compatibility, security, and isolation networking stack

provided by the Linux kernel. However, they suffer from low performance due to

excessive user-kernel crossings and kernel networking stack traversing.

We present kpgpool, an eBPF-based connection pool for PostgreSQL that

proxies packets between clients and the PostgreSQL server before the packets enter

user-space. Our experiments show that kpgpool improve throughput by 19% and

lower latency by 10% with a significantly lower CPU usage comparing to other

user-space pools.

The source code has been made available at https://github.com/justin0u0/k

pgpool.

Keywords: eBPF, Kernel Bypass, Socket, Database, PostgreSQL, Connection Pool

i

https://github.com/justin0u0/kpgpool
https://github.com/justin0u0/kpgpool

摘要

連線池是一種常見的技術，允許多個客戶端共享和重複使用連線。資料庫連

線池可以減少開啟和關閉連線的成本，特別是對於傳統的資料庫系統，如

PostgreSQL。傳統的連線池作為用戶空間應用程式實現，利用 Linux核心提

供的高相容性、安全性和隔離的網路堆疊。然而，由於過多的用戶核心交互

和核心網路堆疊遍歷，它們的性能較低。

我們提出了 kpgpool，一個基於 eBPF的 PostgreSQL連線池，在資料包進

入用戶空間之前代理客戶端和 PostgreSQL伺服器之間的資料包。我們的實

驗表明，kpgpool在與其他用戶空間連線池相比，能提高 19%的吞吐量並降

低 10%的延遲，同時顯著降低 CPU使用率。

關鍵詞: eBPF,內核旁路，套接字，資料庫，PostgreSQL，連線池

ii

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my pro-

fessor, Jerry Chou, for providing invaluable resources and guidance throughout my

research. From the paper reading phase to the final stages of paper writing and pre-

sentation preparation, his advice and support have been instrumental.

I would also like to extend my thanks to my fellow lab members, especially my

partner who researched eBPF alongside me. His assistance in setting up the VM

environment for our workstations greatly facilitated the early stages of our research.

Our frequent discussions and mutual problem-solving were crucial to our progress.

I am deeply thankful to my family and friends for their unwavering support and

encouragement, which were essential in helping me complete my master’s degree.

Their emotional support played a significant role in the completion of this thesis.

Balancing my academic responsibilities with an internship was a challenging

task. However, with the help and support of all the aforementioned individuals, I

was able to successfully and timely complete this thesis. Thank you all.

iii

Contents

1 Introduction 1

2 Background 5
2.1 eBPF . 5

2.1.1 eBPF Architecture . 5
2.1.2 eBPF Program Type and Hooks 7
2.1.3 eBPF Map . 8
2.1.4 Kernel Packet Flow . 9
2.1.5 XDP, TC and the sk_skb Hooks 10

2.2 PostgreSQL Message Flow . 15
2.2.1 Startup Message . 15
2.2.2 Simple Query Protocol . 16
2.2.3 Extended Query Protocol 17

3 Related works 20

4 Motivation 23
4.1 Naive TCP Proxy Performance Gain through eBPF 23

4.1.1 The eBPF TCP Proxy . 24
4.1.2 The User-Space Proxy . 25
4.1.3 Evaluation . 25

5 Implementation 28
5.1 Session Mode . 28

5.1.1 Registering the sockets . 30
5.1.2 Maintaining the sessions 31

5.2 Transaction Mode . 32
5.3 Supporting Prepared Statement . 33

5.3.1 User-space supported prepared statement 34
5.3.2 Bypass prepared statement with eBPF 36

6 Evaluation 38
6.1 Simple Query Throughput Under Transaction Mode 39
6.2 Simple Query Latency Under Transaction Mode 40
6.3 Session Mode Performance . 41
6.4 Extended Protocol Performance 42
6.5 CPU Usage . 44

7 Conclusion 46

iv

References 47

v

List of Figures

2.1 The XDP, TC and sk_skb programs along with the kernel packet
receiving flow. 11

2.2 PostgreSQL Startup Messages . 15
2.3 Extended query protocol message flow in PostgreSQL. 18

4.1 TCP Proxy Performance Comparison 26

5.1 kpgpool Architecture . 29

6.1 Comparing throughput using simple query protocols under transac-
tion mode. 39

6.2 Comparing latency using simple query protocols under transaction
mode. 40

6.3 Comparing throughput with session and transaction mode under dif-
ferent frequency of connection switches. 41

6.4 Comparing throughput using simple query protocol under session
mode. 42

6.5 Comparing throughput using extended query protocol under trans-
action mode. 43

6.6 Comparing latency using extended query protocol under transaction
mode. 43

6.7 Comparing CPU usage using extended query protocol under trans-
action mode. 45

vi

Chapter 1

Introduction

PostgreSQL [29], a robust open-source relational database management system,

serves as a foundational element in diverse applications and is recognized for its

reliability, feature robustness, and performance. It is used extensively by cloud

providers and large-scale web services.

Connections are developed to communicatewith the PostgreSQL, and are luxuri-

ous to create. On connection startup, it forks a process, opens a network socket, starts

SSL handshakes (optional) and sends startup packets to authenticate the user. Fur-

ther, for each connection, resources such as work_mem [34] and temp_buffers [33]

are allocated with about 12MB memory footprint per process by default.

For applications at small scale, the startup costs are not expensive enough to

worry about. However, as the application scales up, the constant opening and clos-

ing of connections becomes more expensive and can become a bottleneck of the

performance.

Database connection pooling [10] [30] [17] is a method to reduce the startup

cost of connections by preserving and reusing multiple open connections with the

1

database. The connection pool can be an external service positioned between the

applications and the database, redirecting packets between them. In the context of

PostgreSQL, PgBouncer [25] is a popular and lightweight connection pool solution.

In terms of pooling options, PgBouncer supports three distinct modes [26]: ses-

sion pooling, in which a connection in the pool remains assigned to the client until

the client closes it; transaction pooling, where a connection is returned to the pool

after every transaction is completed; and statement pooling, where a connection is

returned to the pool after each query is executed. While statement pooling is less

practical since transactions are not permitted in this mode, the transaction mode can

facilitate an increase in the maximum number of concurrent clients compared to the

session mode, provided that the maximum number of concurrent transactions does

not exceed the number of connections available in the pool.

Conventional database connection pools constitute user-space applications that

establish communication channels between clients and databases, continuously

reading and redirecting packets from client sockets to the database sockets, and vice

versa. To facilitate features such as transaction pooling, the proxy must comprehend

the database L7 network protocols to get the transaction state and subsequently de-

termine whether the connection between the client and the server should be main-

tained. User-space applications can readily implement these features without con-

cerns regarding the TCP network stack implementation, as the operating system

manages it and provides a high-level socket API for utilization. However, user-

space applications incur a significant overhead due to the operating system calls for

each read and write operation to the socket.

To eliminate the user-kernel crossing overhead, some approaches utilize kernel-

2

bypass methods such as DPDK to achieve this goal. However, DPDK-based ap-

proaches require a complete rebuild of the networking stack, which increases en-

gineering complexity and is not conducive to cloud environments. In contrast, our

approach leverages eBPF to address this issue. With eBPF, we can intercept packets

in the kernel and redirect them to a different socket without the need for the packet

to enter user-space. Furthermore, we can embed database network protocol logics

directly into the eBPF program, enabling the implementation of advanced features

such as connection pooling, transaction pooling and efficient handling of prepared

statements. This approach offers significant performance benefits without sacrific-

ing the kernel networking stack safety.

We present kpgpool, a PostgreSQL-compatible connection pool using eBPF.

kpgpool supports both session and transaction modes, as well as efficient handling

of prepared statements. Our evaluation shows that kpgpool achieves higher through-

put, lower latency, and reduced CPU usage compared to traditional user-space con-

nection pools.

Main contributions of kpgpool:

1. eBPF-Based Connection Pool: We implemented an innovative connection

pool using eBPF, which intercepts and redirects packets within the kernel,

reducing user-kernel crossing overhead.

2. Support for Session and Transaction Modes: kpgpool supports both ses-

sion and transaction pooling modes, maintaining flexibility and enhancing

scalability for various application requirements.

3

3. Prepared Statement Handling: kpgpool introduces a user-space proxy to

handle prepared statements efficiently, processing most of the messages di-

rectly in the kernel while offloading the more complex parts to user-space to

minimize performance impact.

4. Enhanced Performance: Through our experiments, we demonstrate that

kpgpool significantly improves throughput by 19% and reduces latency by

10% compared to other user-space pools, showcasing the potential for high-

performance database connectivity.

4

Chapter 2

Background

2.1 eBPF

2.1.1 eBPF Architecture

The Linux kernel is partitioned into two distinct areas: kernel space and user space.

Kernel space enjoys full privileges over the entire system, whereas user space oper-

ates with limited access, with privileged operations like disk or network I/O executed

through kernel system calls.

Given the privileged nature of kernel space, the operating system has long served

as an ideal environment for implementing observability, security, and networking

functionalities. However, the stringent requirements for stability and security make

extending the operating system a challenge.

Linux Kernel Modules (LKMs) have traditionally provided a means for pro-

grammers to extend the base kernel without altering the kernel source code. These

modules can be dynamically loaded into the kernel at runtime, removing the need

for kernel recompilation and system reboot. Nonetheless, kernel modules introduces

5

security vulnerabilities and maintenance challenges, as kernel upgrades may render

them incompatible, leading to potential system crashes.

eBPF is an in-kernel execution engine designed to execute sandboxed programs

within the operating system. eBPF facilitates the extension of kernel functionality

without necessitating modifications to the kernel source code or reliance on ker-

nel modules. Notably, eBPF offers inherent safety, efficiency, and cross-version

compatibility guarantees, ensuring robust and reliable program execution within the

kernel environment.

The general workflow of running the eBPF program is as follows:

1. The eBPF program is authored in a high-level language, predominantly re-

stricted to C.

2. The LLVM compiler translates the C program into eBPF bytecode, generating

an object file.

3. The generated bytecode is loaded into the Linux kernel using the bpf system

call.

4. The verifier conducts a safety check on the eBPF program.

5. The Just-In-Time (JIT) compiler translates the bytecode into native machine

code for execution.

While writing eBPF programs, developers encounter certain constraints. Only

a subset of C language libraries is available. For example the printf() function are

restricted. However, eBPF introduces helper functions for program execution within

the kernel environment. For instance, the bpf_printk function enables printing of

debugging messages.

6

The eBPF verifier [11] conducts several checks to ascertain the program’s com-

pliance with predefined criteria. Firstly, the verifier examines the program’s instruc-

tion count. which is 4096 until kernel version 5.2, which increased the number to

1 million. Additionally, the verifier verifies whether the program terminates and

whether all memory accesses within the program adhere to the allocated memory

ranges. This also enforces the program to always perform a boundary check when

accessing bytes of a packet.

2.1.2 eBPF Program Type and Hooks

Each eBPF program is designated a type, dictating its input type, available

set of helper functions, and the hooks it can be attached to. For instance, a

BPF_PROG_TYPE_KPROBE program type is attachable to a kernel probe or a user

probe, while a BPF_PROG_TYPE_SYSCALL program type can be affixed to a sys-

tem call. Similarly, a BPF_PROG_TYPE_XDP program type can be linked to the

express data path, serving as an early hook in the RX path of the kernel networking

stack.

Once an eBPF program is loaded for execution, it must be attached to hooks,

enabling the program to execute whenever specific events occur. Linux offers a

diverse set of hooks, including system calls, function entry/exit points, kernel trace-

points, network events, and various others. Moreover, it is feasible to create kernel

probes (kprobes) or user probes (uprobes) to attach eBPF programs to nearly any

location within the kernel or user applications.

7

2.1.3 eBPF Map

eBPF introduces a fundamental mechanism known as Map, which serves as a key-

value storage enabling data exchange between user-space applications and eBPF

programs, as well as among multiple eBPF programs. Access to eBPF maps is

facilitated through the bpf system call from user-space or via helper functions from

within eBPF programs.

Each eBPF map must be defined with a specific type and a fixed size at com-

pilation time. Linux provides a variety of map types, including array, hash map,

queue, stack, ring buffer and bloom filter, for various data storage and retrieval re-

quirements.

In terms of concurrency control, eBPF programs execute within the kernel space,

which is non-preemptible from the user-space applications view. Hence, it is inher-

ently safe for a single user-space application to access the map at any given time.

For concurrent access from multiple eBPF programs, developers can adopt different

strategies. Theymay opt for a per-CPUmap variant, where each CPU core possesses

its dedicated map accessible to multiple map types such as array and hash. Alter-

natively, developers can employ bpf_spin_lock for manual locking from within the

eBPF program [37]. Certain map types, such as queue and stack, are already thread-

safe by design, employing spinning locks to ensure data integrity amidst concurrent

access [5].

8

2.1.4 Kernel Packet Flow

To comprehend the eBPF network hooks provided by the Linux kernel, we delve

into the packet flow [24] [19], focusing primarily on the receive side. Although the

sending side likely exhibits a reverse flow, it’s essential to note potential variations

in eBPF hook support between the two sides:

1. The flow initiates when a packet arrives at the Network Interface Card (NIC)

device. The NIC forwards the packet to the designated RX queue, typically a

ring-buffer in RAM that the driver reserves at boot, often through direct mem-

ory access (DMA). In earlier kernel versions, each incoming packet triggered

a hardware interrupt (IRQ) by the NIC device, incurring significant overhead.

However, the introduction of NAPI addressed this issue by implementing a

software interrupt (SoftIRQ) mechanism, employing a polling approach to

achieve a balance between interrupts and polling.

2. Upon receipt, the kernel network stack takes charge of processing the packet

with the CPU. The clean_rx path transforms the packet into a socket buffer

object, known as skb.

3. The skb then traverses through the Generic Receive Offload (GRO) imple-

mentation within the kernel, before reaching the Traffic Control (TC) sub-

system. The TC subsystem is responsible for shaping, scheduling, policing,

and potentially dropping the packet. It navigates the packet through vari-

ous queuing disciplines (qdisc), with the simplest being the first-in-first-out

queue (pfifo). More complex qdiscs may be classful, featuring nested classes

(qdiscs). A filter associated with a classful qdisc determines the class to which

9

a packet will be enqueued.

4. Following the TC subsystem, the packet encounters the netfilter component,

which commonly interfaces with user-space programs like iptables and its

successor, nftables. Netfilter operates over the packet from the end of layer

2, just after the TC subsystem, up to the beginning of the layer 4 network-

ing stack (e.g., udp_rcv, tcp_rcv). It registers multiple hooks, such as before

and after ip_rcv, executing diverse tasks including packet filtering, network

address translation, or port translation.

5. Subsequently, the layer 4 networking stack undertakes protocol implemen-

tation tasks specific to the packet’s protocol, such as checksum verification

and congestion control for TCP connections. Upon completion of protocol-

specific tasks, the stack conducts a lookup of the socket associated with the

port. It then put the skb onto a linked list known as the sk_receive_queue. At

last, the stack calls sk_data_ready to mark the socket as having data, ensuring

that the receiving application is promptly notified of the packet’s arrival.

6. Finally, the client, which is listening to a socket, can be notified by the epoll

system call. Upon receiving the notification, it employs the recv system call

to copy the packet buffer from kernel-space to the user-space application for

further processing.

2.1.5 XDP, TC and the sk_skb Hooks

In the ingress packet flow, the XDP, TC, and sk_skb hooks are triggered at different

points. They possess the capability to either pass, drop, modify, or redirect the packet

10

Figure 2.1: The XDP, TC and sk_skb programs along with the kernel packet receiv-
ing flow.

11

within the hook. However, they serve distinct purposes and cater to vastly different

use cases.

XDP

The eXpress Data Path (XDP) type program serves as the initial hook trigger in the

ingress packet flow, and is absence from the egress packet flow. It can operate in one

of three modes: offload, native, or generic. Offloaded XDP enables the program to

execute directly on the NIC device if supported, such as with Netronome Agilio CX

SmartNICs [43]. In native mode, the program runs if the driver supports it, while

drivers lacking XDP support force the program to execute significantly upstack,

after skb allocation in the receive_skb path.

The XDP program offers three primary actions: pass, drop, or transmit. When a

packet is passed, it continues its normal traversal through the network stack. Drop-

ping packets is valuable for packet filtering tasks, such as DDoS protection [2], as it

halts unnecessary network stack traversal at the earliest stage. Transmitting packets

can facilitate the creation of load balancers like Katran [18], Meta’s L4 load bal-

ancer, which leverages XDP as its foundation.

It’s important to note that load balancers of this nature typically operate on a

per-transport connection basis rather than per-packet basis. Per-transport connec-

tion load-balancing ensures that all packets that belong to a transport connection

are sent to the same backend. Per-packet load balancing often requires modifica-

tions to packet MAC, IP, or port information, necessitating checksum recalculation.

A TCP packet is even more challenging to transmit on a per-packet basis, as TCP

packets encapsulate critical states such as the sequence and acknowledgment num-

12

bers. Transmitting these packets across different connections is not feasible, making

per-packet load balancing significantly complex.

TC

The TC type program loads as a specialized qdisc called clsact [40] [22]. Similar

to the XDP type program, it possesses the capability to pass, drop, and transmit

packets. However, there are two key distinctions between TC and XDP programs:

First, the input context differs. TC programs receive sk_buff, whereas XDP

programs receive xdp_buff. Since TC is triggered after skb allocation, sk_buff con-

tains additional information such as priority, queue_mapping, hash, VLAN meta,

and more. This enables functionalities like switching network namespaces of pack-

ets within the same host using the bpf_redirect_peer [6] helper function. For in-

stance, the Cilium project utilizes this feature for faster physical NIC to Pod NIC

transmission or local Pod to Pod communication within the Kubernetes network [3].

However, TC is not suitable for per-packet redirection just like the XDP as the L4

protocol may need to be reimplemented.

Secondly, TC can also be triggered from the egress path. This capability al-

lows for the cloning of packets without multiple send system calls from user-space,

thereby reducing unnecessary user-kernel context switching.

The TC program, however, exhibits lower performance compared to the XDP

program. In a comparison conducted by the Cilium project, both TC and XDP were

employed for North-South traffic management in Kubernetes. The results demon-

strated that XDP can process 10Mpps of inbound packets, whereas TC can handle

only approximately 2.8Mpps [4].

13

sk_skb

The sk_skb type program enables access to the skb upon receiving packets from the

socket, thereby facilitating actions such as passing, dropping, modifying, or redi-

recting the packet. This functionality is used in conjunction with a sockmap (or a

sockhash) - a specialized eBPF map designed to store references to socket structures

and associated values. The sk_skb type program operates by attaching the eBPF pro-

gram to the sockmap, where all packets sent through the sockets stored in the map

trigger the program for processing.

In the sk_skb type program, there are two types of attachment. The

BPF_SK_SKB_STREAM_PARSER program is responsible for determining how

much data has been parsed, and consequently, how much data needs to be queued

to reach a verdict. On the other hand, the BPF_SK_SKB_STREAM_VERDICT pro-

grams determine the direction of the packet. The parser program can be omitted.

Both types of programs give sk_buff as input, which provides crucial informa-

tion, including the source IP, source port, destination IP, and destination port of

the packet. Additionally, it contains two important pointers, ‘data‘ and data_end,

that define the valid memory range for data access.

Unlike the XDP and TC programs, the sk_skb type program operates behind the

L4 networking stack, making per-packet redirection feasible.

Note that while the sk_skb program functions solely on the ingress path, there

exists the sk_msg program that operates on the egress path when sending packets to

the socket. The sk_msg program operates similarly to the sk_skb program.

14

Figure 2.2: PostgreSQL Startup Messages

2.2 PostgreSQL Message Flow

2.2.1 Startup Message

Figure 2.2 shows the PostgreSQL message flow [32] starts after the client establish

a TCP connection to the server.

1. Initially, the client sends a startupmessage packet to the server, which includes

the protocol versions, user name, the target database name, and optional pa-

rameters.

2. Following the startup message, the server engages in the authentication pro-

cess by sending an authentication request message packet to the client. The

15

client responds with the appropriate authentication response message. This

exchange may occur multiple times, depending on the authentication method

used. It’s important to note that while omitting the authentication step is fea-

sible with trusted clients, it’s generally discouraged due to security consider-

ations.

3. The authentication cycle ends with the server either rejecting the connection

by sending an ErrorResponse message packet or proceeding with an Authen-

ticationOK message.

4. Upon receipt of AuthenticationOK, the client awaits further communication

from the server. Typically, the server sends BackendKeyData for future can-

cellation, several ParameterStatus messages for informational purposes, and

ultimately, a ReadyForQuery message informing the startup is completed.

The client can issue commands after the ReadyForQuery message is received.

PostgreSQL supports two different protocols for database query: simple query and

extended query.

2.2.2 Simple Query Protocol

1. Optionally, a RowDescription message packet signals the imminent return of

rows in response to a (SELECT, FETCH, etc) query.

2. Zero or more DataRow message packets for each row returned.

3. A CommandComplete message packet indicates that the SQL command is

completed successfully.

16

4. AReadyForQuerymessage packet indicates that the query is completed. Note

that a SQL query can contains multiple commands, resulting in multiple mes-

sage packets from point 1 to 3.

The ReadyForQuery message includes a transaction status of the current con-

nection. It can be either ’I’ if idle (not in a transaction block), ’T’ if in a transaction

block or ’E’ if in a failed transaction block.

2.2.3 Extended Query Protocol

The extended query protocol [28] provides better performance by reducing the pars-

ing and planning time with prepared statements, and smaller network bandwidth by

using binary format data. However, the prepared statements live at the session level,

which does not fit into the transaction mode of the connection pool if no additional

work is done [23] [27].

In the extended query protocol, clients initiate communication by sending a

Parse message, which includes the textual query string and the prepared statement

name. This may be followed by a Describe message, instructing the server to return

information about the parameters and the expected return row (such as data types).

A Sync message is sent after each series of extended-query messages, prompting the

server to respond. Typically, clients send the Parse, Describe, and Sync messages in

a single packet, and the server responds to each message in a single packet as well.

If the query is successfully parsed, the server returns a ParseComplete message,

indicating that prepared-statement is created and lasted till the end of the current

session. After that, the prepared statement is ready to be executed.

Upon successful parsing of the query, the server returns a ParseComplete mes-

17

(a) Parse, Describe and Sync

(b) Bind, Describe, Execute and Sync

Figure 2.3: Extended query protocol message flow in PostgreSQL.

18

sage, indicating that the prepared statement has been created and will remain until

the end of the current session.

Once the prepared statement is ready for execution, clients proceed by sending

a Bind message, specifying the prepared statement name along with its parameters.

This may be followed by a Describe message for return row information. Immedi-

ately after, an Execute message is sent to initiate execution.

The server’s response to these commands includes DataRow messages, a Com-

mandComplete message, and a ReadyForQuerymessage after receiving a Syncmes-

sage. Those messages are similar as described in the simple query message flow.

19

Chapter 3

Related works

We discuss previous research on eBPF programming, eBPF networking, and other

implementations that bypass the kernel networking stack in DBMS.

Distributed Protocols in Kernel-Space:“Electrode: Accelerating Distributed

Protocols with eBPF”[45] and“DINT: Fast In-Kernel Distributed Transactions with

eBPF”[46] demonstrate performance gains by implementing distributed protocols,

such as consensus algorithms or transactions, in kernel space.

Caching in Kernel-Space: “BMC: Accelerating Memcached using Safe In-

kernel Caching and Pre-stack Processing”[14] uses an XDP program in kernel space

to cache records, achieving lower latency. Conversely, “FarReach: Write-back

Caching in Programmable Switches”[38] caches records in programmable switches

for higher throughput but requires hardware support.

kpgpool applies a similar concept by moving a network-intensive application

from user-space to kernel space to achieve higher throughput.

eBPF Programming:“Fast Packet Processing with eBPF and XDP: Concepts,

20

Code, Challenges, and Applications”[42] provides an in-depth exploration of eBPF

programming workflows, limitations, and potential workarounds. It compares XDP

and TC, giving valuable insights into selecting the appropriate program types for

different use cases. “Fast In-Kernel Traffic Sketching in eBPF”[21] implements

“Nitrosketch: robust and general sketch-basedmonitoring in software switches”[20]

in eBPF. The study highlights that stringent eBPF programming constraints make

migration challenging. For instance, hash tables are limited due to the lack of dy-

namic allocation and unbounded loops in eBPF. The paper also notes that the fastest

user-space implementation may not perform similarly in eBPF.

These works show that eBPF programs have constraints. We need to carefully

consider the capabilities of each program type and make workarounds to bypass

the limitations. kpgpool adopts a similar idea by carefully splitting user-space and

kernel-space responsibilities to ensure feasible implementation.

DPDK and eBPF Comparison:“Revisiting the Open vSwitch DataPlane Ten

Years Later”[41] notes that OVS was originally implemented with a kernel mod-

ule. Due to maintenance and performance considerations, they explored DPDK and

eBPF. However, DPDK is difficult to maintain and requires a dedicated CPU core,

leading them to ultimately adopt eBPF with the AF_XDP program as the final so-

lution.

eBPF in Storage Systems:“XRP: In-Kernel Storage Functions with eBPF”[44]

observes that databases commonly access storage devices using B-Tree or LSMTree

patterns, which lead to multiple context switches and incur overhead. They found

that using SPDK, similar to DPDK, presents issues such as lack of access control and

21

file system support due to the absence of OS integration. Therefore, they extended

eBPF to offload custom code onto NVMe devices, effectively bypassing the kernel

storage stack.

User-Bypass Connection Pool: “Tigger: A Database Proxy That Bounces

With User-Bypass”[8] is an independently and concurrently developed eBPF-based

PostgreSQL connection pool. It shows performance improvements over user-space

connection pools but lacks support for prepared statements, a crucial feature for

enhancing database performance.

DPDK in Database Networking: ScyllaDB [35], a NoSQL database, offers a

DPDK networking mode. However, they do not deploy DPDK in production due to

the trade-off between performance and the deployment or maintenance burden [36].

To the best of our knowledge, there are no other papers implementing a kernel-

bypass connection pooling solution.

These works conclude that while complete kernel-bypass solutions often

provide better performance, the trade-off between performance and maintainability

needs to be considered. eBPF offers a better balance in this trade-off. kpgpool

integrates eBPF for this reason.

22

Chapter 4

Motivation

4.1 Naive TCP Proxy Performance Gain through

eBPF

To evaluate the performance enhancement achieved using the eBPF sk_skb program

compared to the user-space application, we implemented a TCP proxy setup. This

proxy facilitates packet exchange between the client and server across both versions,

allowing us to evaluate the respective efficiencies in handling TCP traffic.

The sequence of events unfolds as follows: Initially, the client establishes a TCP

connection with the proxy, which subsequently establishes a connection with the

server. Once connections are established, the client sends a random bytes message

to the proxy. The proxy then forwards this message to the server. Upon receiving

the message, the server responds with an echo message, which the proxy intercepts

and relays back to the client. This exchange continues in a loop, simulating ongoing

communication between the client and server.

23

4.1.1 The eBPF TCP Proxy

The installation of the eBPF program on the proxy side involves attaching the pro-

gram to the socket and inserting sockets into the sockmap type eBPF map. The

attachment process can be done by the eBPF client library using the bpf system

call. The insertion of sockets into the sk_skb map is achieved by a specialized type

of eBPF program called sockops [7], which triggers in response to specific socket

events. These eventsmay include the establishment of active or passive connections,

or the retransmission of packets.

The sockops program offers a convenient helper function that facilitates the reg-

istration of sockets into the socket map. This mechanism serves as one of the sim-

plest ways to configure the sk_skb type program.

The sockops program is structured to respond to specific events triggered

during TCP connection establishment. When a passive TCP connection is es-

tablished, denoted by the SYN-ACK step in the TCP 3-way handshake, the

BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB event is invoked. This event sig-

nifies the initiation of the client-proxy connection if the local port given matches the

proxy port. Conversely, the BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB event

is triggered during an active TCP connection establishment, corresponding to the

ACK step in the TCP 3-way handshake. This event denotes the establishment of the

proxy-server connection if the remote port given matches the server port.

The bpf_sock_map_update helper function then register sockets into the socket

map. Once registered, packets sent through these sockets immediately trigger the

eBPF program attached to the sockmap. We specified the client-proxy socket to be

associated with key 0 and the proxy-server socket to be associated with key 1 for

24

simplicity.

Regarding the sk_skb program, it checks whether a packet originates from the

client or the server by extracting the local and remote port of the packet. It’s impor-

tant to note that the remote port information arrives in network byte order, necessi-

tating the utilization of the bpf_ntohl helper function to convert it to the host byte

order. Subsequently, the program employs the bpf_sk_redirect_map helper function

to direct the packet either to the client or the server, assigning key 0 or 1, respec-

tively, for appropriate routing.

To initiate the process from the user-space program, we attach the sockops pro-

gram to the cgroup using the cilium/ebpf [9] library. Subsequently, we start a TCP

listener on the proxy port. Upon establishing a TCP client connection, the client-

proxy socket is automatically registered to the sockmap by the sockops program.

On the user-space side, we establish a connection from the proxy to the server for

each client connection established. The proxy-server socket is also automatically

registered to the sockmap by the sockops program.

4.1.2 The User-Space Proxy

The user-space proxy is implemented through 2 goroutines [16] (lightweight user-

thread), with 1 piping requests from the client the the server, and another piping the

server to the client.

4.1.3 Evaluation

To evaluate the performance of an eBPF-based TCP proxy against a user-space

proxy, we conducted an experiment to measure throughput and latency. The testbed

25

(a) Throughput

(b) Latency

Figure 4.1: TCP Proxy Performance Comparison

26

uses three GCP VM instances [13]: one n1-standard-4 machine for the client and

two n2-standard-4 machines for the proxy and server. Throughput and latency were

measured using the sockperf [39] tool.

The experiment included three scenarios: a baseline with no proxy, an eBPF-

based proxy, and a user-space proxy. Figure 4.1 shows that the eBPF-based proxy

achieves throughput approximately 1.56 times higher than the user-space proxy.

However, the baseline with no proxy still outperforms both, with 1.04 times higher

than the user-space proxy. In terms of latency, the eBPF-based proxy has an aver-

age latency 1.11 times lower than the user-space proxy. However, with an additional

hop, the eBPF-based proxy latency is 2.52 times higher than the baseline’s latency

with no proxy.

These results demonstrate that the eBPF-based proxy provides a significant

throughput and latency improvement over a traditional user-space proxy, suggesting

that an eBPF-based connection pool could deliver performance advantages compar-

ing to a traditional user-space connection pool.

27

Chapter 5

Implementation

In the following sections, we present how kpgpool is implemented using Go [15]

for the user-space program and C for the eBPF program.

5.1 Session Mode

In session mode, a client-proxy connection sticks to the same proxy-server connec-

tion throughout the entire session, functioning much like the TCP proxy described

earlier. However, the key difference lies in the initial connection setup. As detailed

in the ”PostgreSQLMessage Flow” section, once the TCP connection is established,

authentication must occur before any queries can be executed. If we register the

socket to the sockmap (or sockhash) using the sockops program immediately after

the TCP connection is established, it would require the eBPF program to handle

the authentication process. Due to the stringent programming constraints in eBPF,

implementing such an authentication process would be nearly impossible. Instead,

we implement the authentication process in the user-space program, registering the

connection to the sockmap only after it is ready for query.

28

(a) Registering the sockets

(b) Maintaining the sessions

(c) Transaction Mode

(d) Supporting Prepared Statements

Figure 5.1: kpgpool Architecture

29

5.1.1 Registering the sockets

Implementing the startup and authentication process in user-space is straightforward

with the appropriate libraries. When the connection pool program starts, it sets up

multiple TCP connections with the server and completes the authentication process

for each one. The startup process completes once the connection has received a

ReadyForQuery message from the server.

The connection pool program listens on a designated port for incoming client

connections. Once a client establishes a TCP connection with the pool, the pool

handles the authentication process in user-space. When the authentication is com-

plete, the pool sends a ReadyForQuery message to the client, signaling that it is

ready to handle database queries.

After completing the startup process for either a server or client connection, the

corresponding socket must be registered with a sockmap or sockhash type eBPF

map. This registration ensures that every packet received through the socket will

trigger the eBPF program associated with the map.

Unlike the earlier described eBPF TCP proxy, which used a sockmap, we opted

for a sockhash. This choice enables us to use the 4-tuple, comprising source IP,

destination IP, source port, and destination port, as a key to access the sockhash

table.

Figure 5.1(a) shows the how kpgpool’s user-space interact with the client, Post-

greSQL and other eBPF maps to setup connections.

30

5.1.2 Maintaining the sessions

Whenever a packet from either the client or the server arrives at the proxy, it trig-

gers the eBPF program if the socket is registered in the loaded sockhash map. To

determine whether the packet originates from the client or the server, we check its 4-

tuple, which includes the source IP, destination IP, source port, and destination port.

Once identified, we can use the bpf_sk_redirect_hash helper function to redirect the

packet to the appropriate destination.

The pool maintains multiple clients and servers at the same time, which means

we need to know which server a client is connected to and vice versa.

We maintain a server state or a client state for each connection, using a hash

type eBPF map and keyed by the 4-tuple. The client state holds a valid flag and the

server’s 4-tuple (source IP, source port, destination IP, destination port), indicating

which server the client is connected to. Upon receiving a client packet, the eBPF

program gets the client state using the bpf_map_lookup_elem helper function. If

the valid flag is set, the packet is redirected to the corresponding server using the

bpf_sk_redirect_hash helper function and the stored 4-tuple. If the valid flag is not

set, the system must assign an idle server to the client.

Figure 5.1(b) presents how kpgpool maintain sessions with a client packet.

Handling server packets follows a similar pattern. The server state contains a

valid flag and the client’s 4-tuple, enabling the system to determine where the server

packet should be redirected.

Idle servers are kept in a separate eBPFmap of the queue type. After the connec-

tion pool completes the startup process for each server, the server’s 4-tuple is added

to this queue. When a client packet arrives and finds no corresponding server, it

31

retrieves an idle server from the queue, then updates both the client and server states

with their respective 4-tuple and sets the valid flag to true.

5.2 Transaction Mode

To increase the maximum number of concurrent clients a connection pool can man-

age with a fixed number of servers, transaction mode can be used. This mode re-

turns a server to the idle state whenever it is not engaged in an active transaction

block. Specifically, when a server sends a ReadyForQuery message indicating an

idle transaction state, the connection between the client and server is released, and

the server is returned to the idle queue, ready to be assigned to another client.

As noted in the simple query message flow section, a single TCP packet may

contain multiple PostgreSQL messages. Each message begins with a one-byte code

that identifies the message type, followed by a four-bytes field specifying the total

length of the message, including the length of the length field itself.

A for loop can be used to iterate over each message, starting with a offset of

0 at sk_buff->data and incrementing it by the specified length for each message.

However, eBPF does not support unbounded loops. This limitation means that even

if we ensure the pointer stays within safe memory access boundaries, we still need to

impose a hard limit on the number of messages per packet and the maximum length

of each message to prevent the pointer from incrementing infinitely.

Upon receiving server packets, we iterate over the messages to determine if any

include a ReadyForQuery message. If such a message is found and it indicates that

the transaction state is idle, we retrieve the client state from the map and unset the

valid flags for both client and server. Finally, the server is placed back into the idle

32

queue.

Figure 5.1(c) shows how kpgpool handles a server packet and releases the con-

nection if the transaction ended.

5.3 Supporting Prepared Statement

Prepared statements are a commonly used feature in PostgreSQL, offering perfor-

mance benefits by allowing the reuse of parsed and planned queries. However, they

present a challenge for transaction mode connection pools, as prepared statements

are session-specific. Executing a prepared statement created in another session is

not feasible without additional handling.

To support prepared statements in a transaction mode pool, the connection pool

must track which prepared statements have been created in each session. When

a prepared statement needs to be executed in a different session—typically due to

a client-server binding change after a transaction is completed—the pool must re-

prepare the statement by injecting a Parse message beforehand.

In a user-space program, this can bemanaged bymaintaining a hashmap for each

client and server connection. For client connections, the prepared statement name

is stored as the key, and the complete query string (or the full Parse message) as the

value. Each Parse message received from the client updates this map. For server

connections, the prepared statement name is mapped to a boolean value indicating

whether the statement has already been prepared on that connection.

However, implementing this entirely bookkeeping in eBPF is nearly impossible

for several reasons:

1. HandlingHash Collisions: Storing string-type keys in a hashmap introduces

33

the potential for hash collisions. Managing these collisions in eBPF is par-

ticularly challenging and inefficient, whether using open hashing (requiring

dynamic allocation of new hash table entries) or closed hashing (potentially

necessitating unbounded loops).

2. Variable Query Strings: Query strings can vary in length, which could result

in significant spacewastage if a large fixed-size value is used in the eBPFmap,

as dynamic value sizes are not supported in eBPF maps.

3. Message Injection Complexity: Injecting messages within the sk_skb pro-

gram in eBPF is inefficient and challenging due to the strict memory access

constraints enforced by the eBPF verifier. This process involves expanding

the packet, locating and creating space at the correct offset, and then copying

the bytes into the packet.

Due to these limitations, supporting prepared statements in eBPF-based connec-

tion pools completely remains a significant challenge. The complexity and con-

straints of eBPF necessitate alternative approaches for efficiently managing pre-

pared statements in transaction mode.

5.3.1 User-space supported prepared statement

In kpgpool, we support prepared statements by introducing a user-space proxy

specifically for handling them.

In the eBPF program, client packets are parsed similarly to the transaction mode

described earlier to identify if they contain a Parse or Bind message. Other types of

messages in the extended query protocol, such as Execute or Sync, do not need iden-

34

tification as they are always sent after Parse or Bind messages in the same session.

These packets are forwarded to the user-space application by returning SK_PASS in

the eBPF program.

In the user-space application, we set up a thread to receive packets from each

client after the socket is bound to the eBPF program. Upon receiving packets, we

know they must contain a Parse or Bind message. However, we need to determine

which server the client is currently connected to in order to handle these messages.

Thankfully, the eBPF program ensures that the client is bound to a specific server

by setting up the client and server states before passing packets to the user-space

program. We can easily get the designated server by querying the client state using

the bpf_map_lookup_elem helper function from the user-space program.

Once we know which server the packets belong to, we parse the packets to ex-

tract PostgreSQL messages. For a Parse message, we store the prepared statement

name along with the query string in the client’s hash map and send the Parse mes-

sage to the server. For a Bind message, we check the server’s hash map by the

prepared statement name to see if it is already prepared on this server connection.

If it is not, we form a Parse message from the client’s hash map and send it to the

server beforehand, followed by the Bind message just received. To reduce network

overhead, the injected Parse message can be sent with the Bind message in the same

packet.

The server will return an additional ParseComplete message after we send the

injected Parse with a Bind message. Most PostgreSQL drivers simply ignore this

message, so there is no need to eliminate it. However, if necessary, the message can

be handled by setting a boolean state in the server state indicating that we should

35

remove the next ParseComplete message. Removing a single message in eBPF is

trivial.

5.3.2 Bypass prepared statement with eBPF

Despite the challenges in fully managing prepared statements within an eBPF pro-

gram due to hash collision handling complexities, we can implement a solution to

redirect most of the Bind messages directly to the server using eBPF, thereby im-

proving overall performance. It’s important to note that Parse messages, which are

only sent once per unique query when using prepared statements, are still handled

by the user-space program. This approach minimizes the performance impact, as

the frequency of Parse messages is significantly lower compared to Bind messages.

In the eBPF program, we introduce a 2D array prepared to the server state, with

a capacity of 256 x 64 entries. This setup allows for storing up to 256 prepared state-

ment names, each limited to 64 bytes, which aligns with PostgreSQL’s constraints

on prepared statement names [31]. Upon receiving a Bind message, we hash the

prepared statement name to determine the corresponding entry and then check if the

name matches the stored entry. This verification step is necessary to identify and

handle collisions where multiple prepared statement names hash to the same entry.

If the prepared statement name matches, it indicates that the statement is already

prepared, allowing us to redirect the message directly to the server.

In the user-space program, before sending a Parse message (either received from

the client or injected) to the server, it updates the server’s prepared map using the

bpf_map_update_elem helper function. If two names result in a single index, the

more recent one will overwrite the previous entry, potentially causing the earlier

36

statement to become unprepared. This design may lead to false-negative reports,

where a Bind message is incorrectly identified as not prepared. However, this sce-

nario is acceptable because the user-space program can handle these cases using a

slower path. As long as collisions are infrequent, most already prepared Bind mes-

sages will bypass the user-space and be redirected to the server directly from the

eBPF program.

Additionally, errors resulting from failed Parse messages are not a concern.

Clients should not use a prepared statement if they have not received a correspond-

ing ParseComplete message. Therefore, updating a failed prepared statement in the

map does not cause any issues.

For hashing, we use the FNV-1a [12] algorithm, masking the result to fit within

256 entries. Research [21] shows that more advanced hashing algorithms, such as

xxHash, do not provide significant benefits in eBPF due to the lack of SIMD in-

structions.

By employing this method, we can effectively bypass most of the Bind mes-

sages with eBPF, reducing the reliance on the user-space proxy for handling these

messages and enhancing overall system performance.

Figure 5.1(d) presents how kpgpool handles a prepared statement packet with

either a fast-path that bypass the user-space, or a slow-path that requires the user-

space proxy for advanced processing.

37

Chapter 6

Evaluation

We evaluate kpgpool using three GCP VM instances: one n1-standard-4 machine

for the client and two n2-standard-4 machines for the connection pool and Post-

greSQL server. All machines run on Linux version 6.1.0. The PostgreSQL server

operates on version 15.3 with its default configuration.

We evaluate kpgpool by comparing it against two different connection pools.

1. Baseline: A non-optimized user-space connection pool implemented in Go,

offering minimal features but supports session mode, transaction mode and

prepared statements.

2. PgBouncer: A production-ready connection pool. The PgBouncer is set on

version 1.20.1.

38

Figure 6.1: Comparing throughput using simple query protocols under transaction
mode.

6.1 Simple Query Throughput Under Transaction

Mode

To evaluate throughput, wemeasured performance by varying the number of concur-

rent clients, each sending queries and awaiting responses. This approach allowed us

to assess how the connection pools perform under different loads. Throughput was

measured using the simple query protocol: each client sent a BEGIN command,

followed by a single query, and then a COMMIT command. Only the query was

counted in the queries per second (QPS) metric.

Figure 6.1 shows that under high load conditions, kpgpool achieved approxi-

mately 1.19 times higher throughput than the user-space proxy, highlighting its ef-

ficiency in handling high volumes of concurrent queries.

39

Figure 6.2: Comparing latency using simple query protocols under transaction
mode.

6.2 Simple Query Latency Under Transaction Mode

To evaluate the latency of the connection pools, we used the same methodology as

for throughput measurement. Latency was measured using bcc’s [1] tcprtt tool,

capturing both the client to pool and pool to server TCP round-trip times (RTT).

Figure 6.2 shows that the pool to server latency remained consistent across all

cases, averaging about 130 140 μs. This indicates that kpgpool, did not significantly

alter the pool to server latency compared to the user-space implementations. In

contrast, the client to pool latency has differences among the pool implementations.

Overall, kpgpool achieved a latency that was approximately 10% faster than the

PgBouncer.

40

Figure 6.3: Comparing throughput with session and transaction mode under differ-
ent frequency of connection switches.

6.3 Session Mode Performance

We also evaluated the performance of session mode against transaction mode.

Transaction mode introduces a slight overhead due to the need to parse PostgreSQL

messages and maintain connections in the eBPF map. However, it increases the

maximum number of concurrent clients with a fixed number of server connections.

The performance was measured by varying the number of queries per transac-

tion. We anticipated that as the number of transactions increases, the throughput of

transaction mode would decrease due to the additional overhead of releasing and

re-acquiring connections. The ”queries per transaction” value of 0 indicates that

queries are sent without a transaction, meaning the connection is released after ev-

ery query.

Figure 6.3 shows that the overhead introduced by transaction mode is negligi-

ble. Specifically, the throughput of transaction mode is about 1.03 times lower than

41

Figure 6.4: Comparing throughput using simple query protocol under session mode.

session mode. Contrary to our expectations, the number of transactions did not sig-

nificantly affect the overhead.

We also measured the performance of kpgpool in session mode against the user-

space pool and pgbouncer to ensure it performs well in comparison to these user-

space pools. Figure 6.4 indicates that kpgpool achieves 1.06 times higher throughput

than PgBouncer under high load in session mode.

6.4 Extended Protocol Performance

We also measured the performance of kpgpool using the extended query protocol. In

the experiment, we includes two queries for each transaction. Identical queries are

sent using the same prepared statement name, with only their parameters differing.

It is possible for some prepared statement names to hash into the same entry,

leading to unnecessary traversal and user-space handling. To evaluate the perfor-

mance impact, we also measured a configuration where the fast path was disabled,

42

Figure 6.5: Comparing throughput using extended query protocol under transaction
mode.

Figure 6.6: Comparing latency using extended query protocol under transaction
mode.

43

named kpgpool-user.

Figures 6.5 and 6.6 show that with the extended query protocol, kpgpool out-

performed PgBouncer by achieving 1.10 times the throughput and 0.92 times lower

latency under high load conditions. In the worst-case scenario, where all prepared

statements were handled in user-space via the slow path, kpgpool-user achieved 0.96

times the throughput and 1.04 times higher latency compared to PgBouncer under

high load.

In real-world applications, the number of prepared statements should be rela-

tively low, as having too many would negate the performance benefits of using pre-

pared statements. Therefore, the likelihood of hash collisions causing significant

performance degradation is minimal. Consequently, kpgpool is expected to provide

better performance with the extended query protocol due to its efficient handling of

prepared statements.

6.5 CPU Usage

kpgpool is expected to provide higher CPU efficiency by avoiding complete network

stack traversal and reducing context switches.

We measured CPU usage by running each pool under a Linux cgroup and col-

lecting cgroup CPU metrics.

Figure 6.7 demonstrate that kpgpool uses only one-third of the CPU compared

to PgBouncer while achieving higher throughput. This highlights the efficiency and

performance benefits of leveraging eBPF for connection pooling in PostgreSQL.

44

Figure 6.7: Comparing CPU usage using extended query protocol under transaction
mode.

45

Chapter 7

Conclusion

Traditional user-space connection pools for PostgreSQL reduce the cost of opening

and closing connections but suffer from performance issues due to excessive user-

kernel crossings and kernel stack traversing.

We introduced kpgpool, an eBPF-based connection pool for PostgreSQL that

proxies packets between clients and the server before they enter user-space. Our

experiments show that kpgpool improves throughput by 19% and reduces latency

by 15% compared to user-space pools.

These findings demonstrate the potential of eBPF for high-performance database

connection pooling, offering a significant boost in efficiency and responsiveness.

Out implementations also shows that other types of proxy-based applications can

leverage eBPF to achieve similar performance improvements with application-

specific logic implemented.

46

References

[1] BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and
more. https://github.com/iovisor/bcc.

[2] Bertin, G. Xdp in practice: integrating xdp into our ddosmitigation pipeline. In
Technical Conference on Linux Networking, Netdev (2017), vol. 2, TheNetDev
Society, pp. 1–5.

[3] Borkmann, D. Virtual Ethernet Device Optimization with eBPF.
https://cilium.io/blog/2020/11/10/cilium-19/veth.

[4] Borkmann, D., and Pumputis, M. Kubernetes service load-balancing at scale
with bpf xdp. In Linux Plumber Conference (2020).

[5] Linux source code of BPF queue/stack maps. https://elixir.bootlin.com/lin
ux/v6.1/source/kernel/bpf/queue_stack_maps.c.

[6] Linux kernel patch: bpf: Add redirect_peer helper. https://github.com/tor
valds/linux/commit/9aa1206e8f482.

[7] Linux kerenl patch: bpf: Adding support for sock_ops. https://lwn.net/Arti
cles/727189/.

[8] Butrovich, M., Ramanathan, K., Rollinson, J., Lim, W. S., Zhang, W., Sherry,
J., and Pavlo, A. Tigger: A database proxy that bounces with user-bypass.
Proc. VLDB Endow. 16, 11 (jul 2023), 3335–3348.

[9] cilium/ebpf: ebpf-go is a pure-Go library to read, modify and load eBPF pro-
grams and attach them to various hooks in the Linux kernel. https://github.c
om/cilium/ebpf.

[10] Custer, C. What is connection pooling, and why should you care . https:
//www.cockroachlabs.com/blog/what-is-connection-pooling/.

[11] Isovalent: eBPF Docs: Verifier. https://ebpf-docs.dylanreimerink.nl/linu
x/concepts/verifier/.

[12] Fowler–Noll–Vo hash function. https://en.wikipedia.org/wiki/Fowler
%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash.

[13] Google Cloud Platform: feedbackGeneral-purpose machine family for Com-
pute Engine. https://cloud.google.com/compute/docs/general-purpose-m
achines.

47

https://github.com/iovisor/bcc
https://elixir.bootlin.com/linux/v6.1/source/kernel/bpf/queue_stack_maps.c
https://elixir.bootlin.com/linux/v6.1/source/kernel/bpf/queue_stack_maps.c
https://github.com/torvalds/linux/commit/9aa1206e8f482
https://github.com/torvalds/linux/commit/9aa1206e8f482
https://lwn.net/Articles/727189/
https://lwn.net/Articles/727189/
https://github.com/cilium/ebpf
https://github.com/cilium/ebpf
https://www.cockroachlabs.com/blog/what-is-connection-pooling/
https://www.cockroachlabs.com/blog/what-is-connection-pooling/
https://ebpf-docs.dylanreimerink.nl/linux/concepts/verifier/
https://ebpf-docs.dylanreimerink.nl/linux/concepts/verifier/
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines

[14] Ghigoff, Y., Sopena, J., Lazri, K., Blin, A., and Muller, G. BMC: Accelerating
memcached using safe in-kernel caching and pre-stack processing. In 18th
USENIX Symposium onNetworked SystemsDesign and Implementation (NSDI
21) (Apr. 2021), USENIX Association, pp. 487–501.

[15] Go: An open-source programming language supported by Google. https://
go.dev/.

[16] Effective Go: goroutines. https://go.dev/doc/effective_go#goroutines.

[17] Gupta, K., and Mathuria, M. Improving performance of web application ap-
proaches using connection pooling. In 2017 International conference of Elec-
tronics, Communication and Aerospace Technology (ICECA) (2017), vol. 2,
pp. 355–358.

[18] Katran: A high performance layer 4 load balancer. https://github.com/fac
ebookincubator/katran.

[19] devconf.cz 2018. Linux packet journey, napi, hardware queue, skb. https:
//www.youtube.com/watch?v=6Fl1rsxk4JQ.

[20] Liu, Z., Ben-Basat, R., Einziger, G., Kassner, Y., Braverman, V., Friedman,
R., and Sekar, V. Nitrosketch: robust and general sketch-based monitoring in
software switches. In Proceedings of the ACM Special Interest Group on Data
Communication (New York, NY, USA, 2019), SIGCOMM ’19, Association
for Computing Machinery, p. 334–350.

[21] Miano, S., Chen, X., Basat, R. B., and Antichi, G. Fast in-kernel traffic sketch-
ing in ebpf. SIGCOMM Comput. Commun. Rev. 53, 1 (apr 2023), 3–13.

[22] Monnet, Q. Understanding tc“direct action”mode for BPF. https://qmon
net.github.io/whirl-offload/2020/04/11/tc-bpf-direct-action/.

[23] Mullane, G. S. CrunchyData: Prepared Statements in Transaction Mode for
PgBouncer. https://www.crunchydata.com/blog/prepared-statements-i
n-transaction-mode-for-pgbouncer#why-prepared-statements-can-be-a
-problem-in-transaction-mode.

[24] Flow of network packets throughNetfilter with legacy iptables packet filtering.
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-f
low.svg.

[25] PgBouncer: Lightweight connection pooler for PostgreSQL. https://www.
pgbouncer.org/.

[26] PgBouncer: Lightweight connection pooler for PostgreSQL: Configuration.
https://www.pgbouncer.org/config.html#pool_mode.

[27] PgBouncer: Support of prepared statements. https://github.com/pgbounc
er/pgbouncer/pull/845.

[28] PostgreSQL Message Flow: Extended Query. https://www.postgresql.org
/docs/13/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY.

48

https://go.dev/
https://go.dev/
https://go.dev/doc/effective_go#goroutines
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://www.youtube.com/watch?v=6Fl1rsxk4JQ
https://www.youtube.com/watch?v=6Fl1rsxk4JQ
https://qmonnet.github.io/whirl-offload/2020/04/11/tc-bpf-direct-action/
https://qmonnet.github.io/whirl-offload/2020/04/11/tc-bpf-direct-action/
https://www.crunchydata.com/blog/prepared-statements-in-transaction-mode-for-pgbouncer#why-prepared-statements-can-be-a-problem-in-transaction-mode
https://www.crunchydata.com/blog/prepared-statements-in-transaction-mode-for-pgbouncer#why-prepared-statements-can-be-a-problem-in-transaction-mode
https://www.crunchydata.com/blog/prepared-statements-in-transaction-mode-for-pgbouncer#why-prepared-statements-can-be-a-problem-in-transaction-mode
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow.svg
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow.svg
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://www.pgbouncer.org/config.html#pool_mode
https://github.com/pgbouncer/pgbouncer/pull/845
https://github.com/pgbouncer/pgbouncer/pull/845
https://www.postgresql.org/docs/13/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY
https://www.postgresql.org/docs/13/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY

[29] PostgreSQL: The World’s Most Advanced Open Source Relational Database.
https://www.postgresql.org/.

[30] DigitalOcean: How to Manage Connection Pools for PostgreSQL Database
Clusters. https://docs.digitalocean.com/products/databases/postgresql/
how-to/manage-connection-pools/.

[31] PostgreSQL Limits. https://www.postgresql.org/docs/current/limits.htm
l.

[32] PostgreSQL:Message Flow: Start-up. https://www.postgresql.org/docs/13/protocol-
flow.htmlid-1.10.5.7.3.

[33] PostgreSQL: Resource Consumption: temp_buffers. https://www.postgres
ql.org/docs/current/runtime-config-resource.html#GUC-TEMP-BUF
FERS.

[34] PostgreSQL: Resource Consumption: work_mem. https://www.postgresql
.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM.

[35] ScyllaDB. https://www.scylladb.com/.

[36] CMUDatabase Group: ScyllaDB: No-Compromise Performance (Avi Kivity).
https://www.youtube.com/watch?t=2586&v=0S6i9BmuF8U.

[37] SELTZER, G. BPF Map Concurrency Techniques . https://www.grant.pizz
a/blog/bpf-concurrency/.

[38] Sheng, S., Puyang, H., Huang, Q., Tang, L., and Lee, P. P. C. FarReach: Write-
back caching in programmable switches. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23) (Boston, MA, July 2023), USENIX Associa-
tion, pp. 571–584.

[39] sockperf: Network Benchmarking Utility. https://github.com/Mellanox/so
ckperf.

[40] Linux kernel patch: net, sched: add clsact qdisc. https://lwn.net/Articles/6
71458/.

[41] Tu, W., Wei, Y.-H., Antichi, G., and Pfaff, B. revisiting the open vswitch
dataplane ten years later. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (New York, NY, USA, 2021), SIGCOMM ’21, Association for
Computing Machinery, p. 245–257.

[42] Vieira, M. A. M., Castanho, M. S., Pacífico, R. D. G., Santos, E. R. S., Júnior,
E. P. M. C., and Vieira, L. F. M. Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications. ACM Comput. Surv. 53, 1 (feb
2020).

[43] Wang, F., Zhao, G., Zhang, Q., Xu, H., Yue, W., and Xie, L. Oxdp: Offloading
xdp to smartnic for accelerating packet processing. In 2022 IEEE 28th Inter-
national Conference on Parallel and Distributed Systems (ICPADS) (2023),
pp. 754–761.

49

https://www.postgresql.org/
https://docs.digitalocean.com/products/databases/postgresql/how-to/manage-connection-pools/
https://docs.digitalocean.com/products/databases/postgresql/how-to/manage-connection-pools/
https://www.postgresql.org/docs/current/limits.html
https://www.postgresql.org/docs/current/limits.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-TEMP-BUFFERS
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-TEMP-BUFFERS
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-TEMP-BUFFERS
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://www.scylladb.com/
https://www.youtube.com/watch?t=2586&v=0S6i9BmuF8U
https://www.grant.pizza/blog/bpf-concurrency/
https://www.grant.pizza/blog/bpf-concurrency/
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://lwn.net/Articles/671458/
https://lwn.net/Articles/671458/

[44] Zhong, Y., Li, H., Wu, Y. J., Zarkadas, I., Tao, J., Mesterhazy, E., Makris, M.,
Yang, J., Tai, A., Stutsman, R., and Cidon, A. XRP: In-Kernel storage func-
tions with eBPF. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22) (Carlsbad, CA, July 2022), USENIX Associa-
tion, pp. 375–393.

[45] Zhou, Y., Wang, Z., Dharanipragada, S., and Yu, M. Electrode: Acceler-
ating distributed protocols with eBPF. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23) (Boston, MA, Apr.
2023), USENIX Association, pp. 1391–1407.

[46] Zhou, Y., Xiang, X., Kiley, M., Dharanipragada, S., and Yu, M. DINT: Fast
In-Kernel distributed transactions with eBPF. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24) (Santa Clara, CA,
Apr. 2024), USENIX Association, pp. 401–417.

50

	Introduction
	Background
	eBPF
	eBPF Architecture
	eBPF Program Type and Hooks
	eBPF Map
	Kernel Packet Flow
	XDP, TC and the sk_skb Hooks

	PostgreSQL Message Flow
	Startup Message
	Simple Query Protocol
	Extended Query Protocol

	Related works
	Motivation
	Naive TCP Proxy Performance Gain through eBPF
	The eBPF TCP Proxy
	The User-Space Proxy
	Evaluation

	Implementation
	Session Mode
	Registering the sockets
	Maintaining the sessions

	Transaction Mode
	Supporting Prepared Statement
	User-space supported prepared statement
	Bypass prepared statement with eBPF

	Evaluation
	Simple Query Throughput Under Transaction Mode
	Simple Query Latency Under Transaction Mode
	Session Mode Performance
	Extended Protocol Performance
	CPU Usage

	Conclusion
	References

